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Abstract

Availability appears to be a more appropriate

measure than reliability for measuring the effectiveness

of maintained systems because it includes reliability as

well as maintainability. This thesis is a survey and a

systematic classification of the literature relevant to

availability. Emphasis in this thesis is centered on a

variety of topics related to availability. The topics

discussed are: the definition and concepts of the avail-

ability, the probability density functions of failure

times and of repair times, system configurations; and the

various approaches employed to obtain the availability

models; effect of preventive maintenance policies on avail-

ability; availability parameters in the model; and system

optimization.

vii



AVAILABILITY OF MAINTAINED SYSTEMS

CHAPTER I

INTRODUCTION

Increasing complexity of modern-day equipn'ent, both

in the military and commercial areas, has brought with it

new engineering problems involving high performance, reli-

ability and maintainability. Reliability has long been

considered as a measure of system effectiveness. However,

it has proved to be an incomplete measure of effectiveness

because it does not consider maintainability, another mea-

sure of system performance. With increasing complexity

and the resulting high operational and maintenance costs,

greater emphasis has been placed on reducing system main-

tenance while improving reliability. In this regard,

availability, which is a corhined measure of reliability

and maintainability, has received wide usage as a measure

of maintained systems effectiveness.

This thesis is a survey and a systematic classifi--

cation of the literature relevant to availabilvty. Empha-

sis in this thesis is centered on a variety of topics

related to availability. In Chapter If, basic concep:•tsI v include definition and concepts of availability, failure

and repair times distributions, and system configuration.

1
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| In Chapter III, the different approaches used in obtain-

ing availability models are discussed. In Chap 3r IV,

many availability models using the Markovian approach are

discussed. In Chapter V, the effect of preventive main-

tenance policies on availability is eyxlained and classi-

ficaition of the availability parameters used in the model

and system optimization is presented.

2
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CHAPTLI II

SURVEY ON BASIC ELEMENTS OF AVAILABILITY

In describing the availability of a given system

it is necessary to specify three things:

1. The component failure process,

2. The repair or maintenance process, and

3. System configuration.

SIn th is chapter , these three characteristics will be

studied; but before exploring these characteristics, we

would like to discuss the various definitions of avail-

ability.

Definition and Concepts of Availability

There are two classificatiors for availability.

Classification 1

In this classification the definition depends on

the time interval; availability is classified into three

categories (Figure 2.1) : (1) instantaneous availability,

(2) average upti::,e, and (3) steal'y-state availability 1135 .

1. Instantaneoas availability, IA(t))], is defined

as the probability that thl: system is operational at any

random time, t.

2. Average uoptimn, avai llbility, [A(')], is the • pr-oportion

of time kn a specified inte.r\%al (0, 1) that the system is

3
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Fig. 2.1. Graph Showing Instantaneous, Average Uptime,
and Steady State Availability
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"a\,t'.i.ab].e for use and is expressed as:

4

T

A(T) = • A(t) dt (2.1)

0

3. Steady stage availability, A(-), is the uptime

availability when T÷ - and is given by:

A 1 ir A(T) (2.2)

The representation of availability which is appropriate

depends upon the system mission and its conditions of use.

The steady-state availability may be the satisfactory mea-

sure for systems which are to be operated continuously.

The average uptime may be the most satisfactory measure

for systems whose usage is defined by a duty cycle. For

systems which are required to perform a function at any

random time, the instantaneous availability may be the

most satisfactory measure.

Classification 2

In this classification the definition depends on

the type of downtime. Availability is classified also

into three categories: (1) ;.nherent availability,

(2) achieved availability, and (3) operational availabil-

ity (Figure 2.2).

5
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.. .. . ...

In this category, the form used to describe system

availability is that of an expected value function which

assumes steady-stage conditions.

1. Inherent availability, Ai, is defined as the

probability that a system, when used under stated condi-

tions, without considering any scheduling or preventive

action, in an ideal support environment, will operate

satisfactorily at a given point in time. It excludes

ready time, preventive-maintenance downtime, logistic time,

and waiting or administrative downtime. It may be

expressed as:

A FMTBF 2.3)i I TBF + MTTR

where:

MTBF = mean time between failure, and

MTTR mean time to repair.

2. Achieved availability, A , is defined as the

probability that a system, when used under stated condi-

tions in an ideal support environment (i.e., available

tools, spares, manpower, etc.), will operate satisfactorily

at a given point in time. It excludes logistic tim-3 and

waiting or administrative downtime. It includes active

preventive and corrective maintenance downtime. It can

be expressed as:

A a MTBM (2

-7
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I• where:

MTBM = mean time' between mainLenance, and

M = Mean maintenance time resulting from both

corrective and preventive maintenance
act ion s.

3. Operational availability, A0 , is defined as

the probability that a system, when used under stated con-

ditions in an actual operational environment, will operate

satisfactorily at a given point in time. it includes

ready time, logistic time, and waiting or administrative

downtime. It carn be expressed as:

= MTBM + Ready Time (2.5)
(MTBM + Ready Time) + MDT

where:

Ready time = the time in which the system is ready
but not in operation,

MDT = Maintenance downtime including logis-
tic downtime and waiting or adminis-
trative time, and

MDT = M + delay time.

Operational availability appears to be a more

realistic measure than the other two measures. However,

because delay time is determined by admiini.;trative and

supply factors which depend on the enviconment of the

system, this definition will not be use2.

...



The Failure Process Distributions

The failure times distributions describe the corn-

ponent failure process; i.e., the probability law govern-

ing failures. There are two ways of postulating a com-

ponent failure distribution:

i. Physical reasoning theory. In this method,

we depend on physical reasoning to assume a form of the

failure distribution. This method is useful when there is

little a priori information.

2. Using observed empirical evidence. In this

method, attempts can be made to fit a failure density

function to the available data.

Of course, a combination of these two methods is optimal

if sufficient statistical data are available and insight

into the failure distribution can be obtained by physical

theory.

Many types of failure distributions have been

used in the literature. Classification of references on

availability according to various types of failure time

distributions (exponential, Erland, Weibull, Gamma,

Rayleigh, normal., log-normal, uniform, extreme value,

and general) is given in Table 2.1.

The most frequently employe-3 distribution is the

negative exponential distribution. To justify the use

of the exponential failure law, much experimental and

[ operational data have been collected. One of the earliest

9
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TABLE 2.1

CLASSIFICATION OF REFERENCES ON AVAILABILITY
WITH REGARD TO FAILURE TIME DISTRIBUTIONS

Name of
Distribution References

Exponential 1-4, 7-10, 14, 16, 18, 20-25, 28, 29,
35, 39, 41-43. 47, 48, 50, 53-57, 59, 60,
63, 65-70, 74-77, 83, 86-88, 90, 93, 94,
96, 97, 103, 106, 109, 112, 113-122,
126-128, 130, 137, 139, 140, 143-145,
150, 152, 154-158, 164, 165, 167, 168-
173, 175-179, 192, 193

Erlang 41, 91, 104, 151, 157, 165

Weibull 10, 16, 41, 88, 112, 113, 157, 165,
179, 193, 196

Gamma 10, 16, 41, 88, 112, 113, 157, 165,
179, 182

Rayleigh 112, 116, 165

Normal 10, 16, 21, 41, 56, 112, 113, 117,
165, 179, 182

Log-Normal 10, 14, 16, 40, 58, 113

Uniform 27, 116, 165

Extreme Value 10, 113

General 19, 20, 30, 47, 51, 66-68, 105, 110-
(Arbitrary) 11-2, 126, -.31, 133-136, 142, 144, 162,

166, 190

10



f reports of a statistical nature was made by Davis [49],

and subsequent studies by Carhart [37] and Boodman [221

indicate that this distribution adequately fits failure

experience. Cox and Smith [46] demonstrate that the

equipment generally will exhibit the exponential failure

pattern provided that the components are replaced as they

fail, even though certain components within the equipment

may not exhibit it.

This distribution seems to apply to all electronic

equipment. The rationale behind this is that the electronic

components do not fail from wearout or fatigue, but from

being overstressed; and these overstressed conditions are

purely randomly distributed. In addition, all military

standards and 90 percent of the military reliability calcu-

lations are based on random failures [112]. The most

attractive feature in using the exponential distribution

is that it enables one to deal with a constant failure

rate. Hence, it provides an advantage from a mathematical

tractability point of view even though it is not always

justified.

Bocchi [21] dei:,onstrated the suitability of using

the exponential failure distribution for mechanical reli-

ability prediction. The rationale for that is during the

useful life period when failures are due to poor quality

and wearout is low, failure rates should tend lo be some-

what constant. The main contributor to the failure rate

w
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is when random high stress levels exceed the strength of

the components. Other components which also justify the

use of exponential failure distributions are tube puncture,

capicitor breakdown, fuse blowout, many aircraft and

missile parts, airborne radars and fire control systems.

References that justify the use of the exponential failure

distribution are References 22, 37, 46, 49, and 196.

After the exponential distribution, the Weibull

distribution is probably the most widely used distribution.

The hazard function of the Weibull given by

8-!
h(t) - (t , t>_0 (2.6)e o

will decrease in time if 8 < 1, will increase if 8 > 1, or

will be constant if 8 = 1 which is the exponential case.

The Weibull distribution has been used to describe fatigue

failure, vacuum tube failure, and ball bearing failure.

It is the most popular parametric family of failure dis-

tr •,utions.

The Raleigh distribution is a single parameter

density which holds for a component with a linearly

"increasing failure rate (Xt)

The rectangular or uniform distribution may well

be employed if every component has the same failure rcte

or each item takes equally as long to repair.

The Erlang distribution is used to describe both

4.. the failure and repair times. Kodama [104] used the

12
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Erlang as a failure distribution. Since the Erlang dis-

tributions are a special case of the incomplete gamma

distributions (shape parameter is art integer), they will

fit many an perhaps most of the distributions encountered

in practice, and mathematical treatment will be easy.

The normal distribution describes wearout failures.

By wearout failures we mean those cases in which no overt

or abrupt failure has occurred but the item has more or

less gradually reached the failed state through the deteri-

oration or depletion of some quantity, structure, or func-

tion necessary for useful operation. In this type of

failure it is noticed that the component's death tends to

t cluster around a mean life time, t; half the failures

occurr-ing before and half afterward. There are few very

early or very late failures, the failure rate being low

initially and reaching a maximum at the mean lifetime.

The hazard is very low initially, and rises rapidly after

t. This familiar pattern of failure can be described by

the normal distribution [37] in which the failure rate as

a function of operating time, t, is given by:

1 
)2

f(t) = e ( (2.7)
a,7-

The normal distribution failure pattern applies to

systems which exhibit small variation in failure resistance

t among the indivic•uals within a population and which are

13
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subject to small variations in environmental severity.

Further, the failure resistance of the mechanism deteri-

orates with time and operational procedure requires that

each item be used until ultimate failure. Davis [49]

states that the normal distribution characterizes the

failure of dry cells and light bulbs. Bell [16] men-

tioned also that vacuum tubes used in commercial and mili-

tary electronic equipment follows the normal failure rate

besides significant fraction of the commercial aircraft

parts.

Many life length distributions occurring in prac-

tical applications are obviously not normal because they

are markedly skewed whereas the normal distribution is

symmetric. The gamma family of distributions is skewed

and therefore may seem more natural than the normal family

in these cases.

The gamma density function is described by:

x (xt)•-1e --At
f(t) e - 0, t ' 0 (2.8)

The ganuma has increasing failure rate for u i 1 and, in

this case, the failure rate is bounded above by A; for

1< 1, the failure rate is decreasing.

The ]ocj-normal density is defined as:

f Wt .......... I _ ~ [ -• l g t •, 1 ..... 2• <•
2( .9

2a v2rr 2 cl
"t>0

14



This is a skew distribution in which both long

and short downtimes occur more frequently than would be

the case in data with the same value fitted to an exponen-

tial distribution. The failure rate of the log-normal

distribution increases at first and then eventually

decreases to zero. For this reason, the log-normal has

found disfavor as a failure distribution. It has been

proposed as a reasonable family of distributions for

describing the length of time to repair a piece of equip-

ment, however , and there is some empirical evidence for

this assertion [10].

Many authors including Coppola [45] and Howard

[92], indicate that downtimes are generally well fitted

by a log-normal distribution. Shelley [163] pointed out

t!mo use of log--normal for cargo aircraft perfectly fits

the data, especially at the upper percentile points.

Recent reliabilities studies on various potential communi-

cation systems indIcates that many semiconductor devices

have lifetime distributions well represented by the

log-normal [40].

On the basis of actual observation of time to

failure it is difficult to distinguish among the various

nonsymmetricai probability functions. Thus, the differ-

ences among the gamma, Weuul Iu, and log-normal distribution

functions become sicrnift-cant only in the tails of the

S05
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distribution but actual observations are sparse in the

tails because of limited sample sizes.

The Repair Process Distributions

Table 2.2 shows the classification of references

on availability with regard to a variety of repair time

distributions: exponential, Erlang, Weibull, Gamma,

Rayleigh, normal, log-normal, uniform, and general.

The exponential distribution is used as a theoreti-

cal distribution for the repair time because of its ana-

lytical properties and computational purposes [1881.

Rohn [154] maintains that the essential characteristic

of repair times of complex electronic equipment is stated

as a high frequency of short repair times and a few l.ong

repair times; thus, this type of behavior suggests repre-

sentation by an exponential distribution.

As mentioned before, the log-normal distribution

is quite popular for the distribution of repair times.

In many situations, repair times are best described by the

log-normal distribution, and many authors [45, 92, 163,

179, 1871 justify the use of the distribution. Studies on

airborne radar equipment and ground equipment for surface-

to-air missile systems have indicated observed repair time

distributions that best fit the log-normal distribution

[77, 162].

S• 16
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TABLE 2.2

CLASSIFICATION OF REFERENCES ON AVAILABILITY
WITH REGARD TO REPAIR TIME DISTRIBUTIONS

Name of
Distribution References

Exponential 1-4, 7, 10, 18, 23, 24, 25, 35, 39, 43,
50, 53-56, 59, 63, 68-70, 74-75, 86-88,
90, 93, 94, 103, 107, 112, 114, 116,
118, 120, 122, 127, 137, 139, 140, 143,
154, 156-158, 165, 172, 173, 175, 188,
192, 193

Erlang 69, 122, 126, 144

Weibull 29, 112, 193

Gamma 24, 29, 116, 140, 144, 146, 157

Raleigh 112, 1.16

Normal 14, 20, 47, 56, 112

Log-Normal 10, 20, 29, 47, 56, 60, 83, 88, 102,
179

Uniform 116, 122

GGeneral 10, 19, 28, 30, 42, 43, 48, 51, 65, 74,
(Arbitrary) 76, 96, 97, 104, 105, 106, 109, 110-112,

119, 121, 126, 130, 131, 133--136, 142,
144, 145, 150, 151, 162, 164, 166, 167,
168, 171, 190

17
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"System Configurations

Classifications of references on system confignra-

tion are shown in Table 2.3. The logical approach in the

availability analysis is to decomnpose the system under

consideration into functional entities composed of com-

ponents or subsystems. 'This subdivision generates a block-

diagram and describes the system opelaLion. To fit this

logical structure, models are ftr7•luatnd. In this way,

the block-diagram of the type of the system configurations

describes how the components are functionally connected

and the rules of operation.

The simplest structure in availability analysis

is the single configuration in which only one component

comprises a system.

The series configuration is the next simplest and

most common structure. In this configuration the func-

tional operation of the system depends on the operation

of all system comiponents. The redundant configuration can

be divided into two main categories--the parallel redun-

dant configuration and the standby redundant configu:ration.

In the parallel redundant configuration the system operates

if any one of the components operate. This configuration

is often called the full redundant configuration. On the

o'her hand, if the system operation requires more than one

component to operate, this configuration is called the par-

Stia]. redundant configuration. In the parallel system all

18



TABLE 2.3

CLASSIFICATTON OF REFERENCES ON AVAILABILITY
WITH REGARD TO SYSTEM CONFTGURATIONS

System
Conf igurat ion References

Single 6, 7, 10, 14, 25, 28, 35, 39, 53, 75,
105, 114, 116, 156.. 1.57, 165, 1-79,
182, 193

Series 10, 14, 23, 53, 78, 90, 96, 3.19, 126,
130, 142, 143, 160, 164, 165, 173, 174,
179, 190

Redundant
Parallel 2-5, 7, 10, 14, 24, 35, 39, 54, 59, 63,
Redundant 68, 74, 75, 77, 85, 87, 88, 90, 94, 103,

104, 111, 118. 120-122, '39, 140, 143,
152-155, 157, 158, 165, 173, 179, 192,
193

Standby 4, 10, 13, 14, 19, 30, 39, 42, 43, 48,
Redundant 55, 59, 65, 68, 77, 78, 88, 93, 104,

109, 121, 128, 132-137, 140, 142, 144,
152, 157, 165-167, 168, 171, 179

Perfect 13, 19, 30, 39, 42, 43, 65, 78, 104,
Switch 109, 136-139, 166, 171

Imperfect
Switch 48, 96, 137, 140, 142

Cold 13, 30, 39, 59, 65, 76, 78, 79, 125,
Standby 128, 134, 1-36, 137, 160, 1,66

Warm
Standby 19, 42, 43, 104, 1.44, 167, 170, 171

Series 10, 39, 54, 65, 75, 106, 110, 1-12, 143,
Para1.lel 165, 17S, 1]79

Complex 60, 90

..19... . . .. ....



the components are turned on at the beginning and operate

until failure occurs. Using less reliable units in redun-

dant configurations is one of the methods of coping with

the problem of designing reliable systems. For nonmain-

tained systems, redundancy is best applied at the component

level rather than at the system level. However, for systems

whose components can be repaired as they fall, to have

redundancy at the component level may not be the best

policy. The reason is that i:P component redundancy is

employed, repair may not be possible while the system is

operating; whereas, a failure with system redundancy could

be repaired.

In the standby redundant system the parallel com-

ponents are not active at the same time. At the start of

operation the switch connects the input to one component.

Meanwhile, other components are left in standby with zero

failure rate or a failure rate lower than the active com-

ponents. The system in which standby components cannot

fail is then referred to as cold standby. The system is

called warm standby if only one component operates at a

time, and the standby component has a lower failure rate

than the active component, but not zero failure rate as ip

cold standby,.

?.he standby conr~figuration can bc divided accord ingi

to the type of switching t. two types: (1) perfect switch-

ing and (2) imperfe<(':t switch ing ft .ie switching devNice

20
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is assumed to be perfect, the standby system is better

than the parallel system. The situation changes when the

standby component ages and the switch is imperfect.

Fig-are 2.3 represents the different types of system con-

figuirations.

Based on the configurations discussed above, the

system configuration concept is further extended to include

series parallel, parallel series, and complex. By complex

configuration we mean a system which Jis not purely series,

parallel, series parallel or parallel series.

I'I

- i Vt
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System Configuration

Sine Series Redundant Complex

Standby Parallel
Redurndant Redundant

F
Perfect Tmperfect

Switching Switching

Cold Warm
Standby Standly

Fig,. 2.3. Different Types of System Configurations

22
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CHAPTER III

APPROACHES USED IN OBTAINING
AVAILABILITY MODELS

Markovian

The Markovian approach in the formulation of the

availability model has been frequently used assuming

exponential distributions for failure times and repair

times (see Table 3.1 for references). To obtain the avail-

ability model of a given system using this approach,

Sandler [157] suggests that the following to be specified:

(I) the component failure process, (2) the system configura-

tion, (3) the repair policy, and (4) the state in which the

system is defined to be failed (see Chapter IV for

details).

For an illustration, let us consider a single

component system with a constant failure rate, X, and a

constant repair rate, p (exponential distribution). Since

repair is possible, transitions can be made back and forth.

Thus, two states can be designated: (1) State 0--the system

is operatinag, and (2) State 1--the system has failed and

is under repair,

Using conditional probabilities, the transition

nmtrix can be constructed and the differei ial equations
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TABLE 3.1

APPROACHES USED IN OBTAINING AVAILABILITY MODEL

Classification References

Markov ian
Instantaneous 10, 19, 25, 39, 63, 69, 72, 93, 1.07,
Availability 127, 132, 134-137, 153, 157, 165, 166,

178, 192

Average Uptime
Availability 10, 39, 63, 69, 157

Steady-State 2, 3, 5, 10, 24, 25, 39, 42, 50, 53-56,
Availability 59, 63, 69-74, 78, 79, 87, 90, 93, 94,

103, 109, 111, 114, 120, 134-137, 139,
140, 156, 157, 160, 165, 167, 171, 175

Ratio of Uptime 1, 4, 14, 20, 23, 35, 47, 51, 60, 65,
to Total Time 68, 75, 83, 89, 92, 96, 100, 110-112,

116, 119, 120, 130, 131, 143, 158, 162,
172-174, 188, 190, 193

MTBF 4, 20, 23, 51, 65, 75, 89, 92, 96, 110,
MTBF+MTTR 119, 120, 126, 143, 158, 172, 173, 190,

193

MTBM
MTBM+M 20, 51, 112

Uptime

Uptime+Downtime 20, 51, 60, 111, 116, 131, 164, 174

Integral Theory 68

Monte Carlo
Simulation 60, 123

Single-Cycle
Availability 116, 131

Multiple-Cycle
Availability 96

Confidence Interval
of Availability 25, 29, 131, 172-174

Bayesian Approach 24, 25, 73, 173, 174
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describing the stochastic behavior of the system can be

formed.

dP0 (t)

dt = -XP 0 (t) + PP 1 (t) (3.1)

dP1 (t)

dt =XP 0 (t) - pP 1 (t) (3.2)

where:

P. (t) denotes the probability of the system beingin state i at time t.

If the system is in operation at time t = 0, the initial

conditions are P 0 (0) = 1 and P1 (0) = 0. Transforming equa-

tions (3.1) and (3.2) into Laplace transforms under the

above initial conditions, we have

(s+A)P 0 (s) - Pipl(S) = 1 (3.3)

- xP 0 (s) + (s+P)PI(S) = 0. (3.4)

Now the instantaneous availability, A(t), is the inverse

Laplace transform of P0 (s); i.e., A(t) = P0(s)}.

Solving

A(t) = (t) - -(X+•tOl)= ý+ P 7--• e (3 .5 )

the average uptime for some definite period of time (0, T)

can be found by integrating A(t) over this time interval

and dividing by the total time.
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A(T) t)t d+ 2T [l-e ] (3.6)

If we are interested in the long-range availability, we

can let T-). and find the steady-state availability

A(•) = (3.7)

Due to analytical and computational difficulty,

not much work has been done when failure and repair times

are other than exponential. For the analysis of the

redundant system with exponential failure pdf and the

general repair time distribution, Branson and Shah employ

a semi-Markov process. Hall and others [88] analyze the

redundant system when failure times and repair times follow

combinations of the exponential, Wei!ull, and log-normal

distributions. They illustrate the use of Fourier series

for evaluating the inverse Laplace transformation. Although

non-Markovian processes have not been studied as widely

as Markovian processes, Sandler [1571 shows that it is

often possible to treat a stochastic process oi. the non--

Markovian type by reducing it to a Markov process. This

can be done by increasing the number of states, each being

desc~ribed by a constant transition rate. As an example, a

single component system with an Erlang failure distribution

and the cdf

F(t) -e - te (3.8)
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and an exponential repair distribution with the cdf

G(t) = 1 - e"it (3.9)

by assuming that the component goes through two exponen-

tial phases each of average length 1/X, the process can

be reduced to a Markov process with three states:

(1) State 0--the system is operating in the first phase,

(2) State 1--the system is operating in the second phase,

and (3) State 2--the system has failed and is under repair.

This formulation leads to the transition matrix::

0 1 2

P= J(l; 1-0N_ (3. 10)

2 ý 0 0 1)

The solution of this matrix is simply

--Nt
RCt) = P 0 (t) + Pllt) = e (l+Xt) (3.1.1)

Regulinski [153] used the Markovian aegproach to

model the availability function for ýomputer networks.

Gates [72] presented an analytic technique for evaluatinj

the availability of complex s;ystems which are required to

operate around the clock, but which are staffed with main-

tenance personnel Periodically on a s.hift basis. iHe shows

that such systems can be modeled as a per-iodically, time

27
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varying Markov process governed by a repeatable sequence

of transition matrices.

Doyon [56] utilizes the steady-state availability

concept to analyze a computer system consisting of a data

processor and tape units. The purpose of the analysis is

to solve for the MTTR of the redundant system. The author

points out that defining the system states and formulating

the appropriate system steady-state availability transi-

tion rate diagram is the step requiring the greatest degree

of ingenuity and expertise. By contrast, subsequent steps

to obtain a numerical solution for the system MTTR involves

only routine mathematical manipulations.

The above approach is called the differential

theory in reliability since the states of the system can

be expressed in the form of a set of differential equations

whose solution permits the evaluation of reliability and

availability of the system. Wnen failure and/or repair

time are not exponentially distributed, the differential

theory is not applicable; so the integral theory was intro-

duced to overcome differential theory limitations.

Integral Theory of Reliabili ty

The first paper on integral theory was published

in 1973. In 1974 integral theory was used to evaluate

the reliability of complex systems, such as telephone

exchanges. whose repair time was not expoiientially
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distributed [Galetto, 68]. In 1975 it was proved that

integral and differential theories are equivalent as

Markovian processes are studied. In the same year,

integral theory was applied to state a general model for

system cost-effectiveness, as failure and repair rates

are assumed constant. In 1977 Galetto used the differen-

tial theory for obtaining the reliability and availability

of different system configurations and drive formulas for

MTTR (mean time to repair), mean uptime (MUT) and mean

downtime (MDT) as a function in MTTR and then to derive

steady state availability, A(o)):

A() UT (3.12)
MUT + MDT

Galetto shows that the ratio -MTTF__MT is a meaningless
NTTF -+ MTTR

definition of availability, unless series systems are

considered.

LThe integral theory of reliability overcomes the

limitation of the differential theory especially for the

mechanical systems since the failure rate for such sys-

tems is increasing as they age during operation.

Ratio of UpOtime to Total Time

Another approach in the formulation of the avail-

ability model is the use of the definitions inherent,

achieved, and operational availabi lity. When only correc-

tive maintenance is considered, ihe inherent availability
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which is a function of MTBF and MTTR is employed. In this

case, MTBF is computed by:

MTBF =f R(t)dt (3.13)

0

where:

R(t) is the reliability function of the system.

MTTR is interpreted a. synonymous with mean corrective

maintenance time. When both corrective and preventive

maintenance are considered, the achieved availability which

is a function of MTBM and M is introduced where MTBM is

the mean interval of all maintenance requirements, both

corrective and preventive. M is the downtime resulting

from both corrective and preventive maintenance. For

example, when preventive maintenance is scheduled at time,

T, it is expressed by

T,r

MTBM f R(s)ds (3.14)

0

M is expressed as:

M f + M fM- ~c c + (3.15)
f + f

c p

where:

M is the downtime resulting from both cortrective
and preventive maintenance,
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M is the mean corrective maintenance time,
c

M is the mean preventive maintenance time,p

f is the number of corrective maintenancec actions, and

f is the number of preventive maintenance
P actions.

Operational availability is an appropriate me-

sure if downtime includes logistics and administrative time

as well as active maintenance downtime. For the classifi-

cation of references, see Table 3.1.

Monte Carlo Simulation

Whenever the problem is extremely complex and/or

experimentation is desirable but costly, Myers suggests

the use of the Monte Carlo technique, and illustrat_.s a

few examples of this solution technique. Faraghe. and

Watson [60], however, maintain that availability o'n-.ysis

of complex systems utilizing Monte Carlo simulatior, tech-

nique have revealed a lack of realism because they re

inflexible with respect to configuration changes, thus

making them unsuitable for optimization studies of vail-

ability through component redundancy. By incorporating

engineering and mathematical analysis, they present a

realistic methodology which involves an engineering descrip-

tion of the system, the formulit ion of the simulation

model, and t he comfmt: ter and ong ineer ing ana oys is of '-he

sy s t e Im.

3 L
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Sin le-Cycle Availability

The Kiefinitiori of availability given by the

fraction of the total desired operating time has been

quite widely used as a main design criterion. However,

there is no probabilistic guarantee that a specified avail--

ability value will ever be reached other than approxi-

mcately in practice. Martz [116], therefore, provides a

definition of single cycle availability that incorporates

a probabilistic guarantee that the availability value will

be reached in practice. Single-cycle availability is

defined as the value, Av, such that:

P(A >. A) = v 0 < v < 1 (3.16)!v

By specifying v we have a probabilistic guarF.nt,0 on the

frequency of occurrence of the corresponding availability

value.

For example, if we require a system availability

A = 0.99 and v is chosen to be 0.90, in this case, wev

are 90 percent certain that our design value of 0.99 will

be met in practice. To illustrate the use of this defini-

tior, Martz [116) presents a few examples with exponential,

uniform, and Rayleigh distributions for failuýe and r-epair

times, and shows that the median cycle availability A0. 0 5

is equivalent to the steady-sta'e availability.

•4akagawa and Goei [131] extend the definition for Martz

for a tinite interval. Their definition differs with
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Martz's ýn that they take into consideration the int..val.

of system operation.

Availability for Multiple Cycles

and for a Finite Time

Kabak [96] discusses two types of availability:

(1) availability for a given number of cycles, and (2) avail-

ability for a given length of time. His concept of avail-

ability is the proportion of time that system is up and

is denoted by

t
t+R

where:

t = failure time which has a distribution f(t),
and

R = a constant repair time.

The availability for one cycle, A(l), is defined
t

in terms of expected value of that is,

A(l) f f(t)dt (3.17)f t-R

0

For i cycles, the total elapsed time is T + iR where

j=i
T = Z t ; i.e., T is ,the i-folh convolution of t

The availability for . cycles, Alj), is the expected value

f Rand is given by:
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T
Ali) T~i g (T) dt . (3.183

0

if t has exponential distribution. T has an Erlang distri-

bution with i degrees of freedom.

The finite time availability is determined by con-

sidering the number ce: times, n, that the system has

suffered a failure in the interval (0, T) where T is given,

and by combining the associated probability with tne pro-

portion of available time.

In the limit when T-- the finite time availability

approaches the steady-state availability.

Confidence Interval of Availability

A point estimate of availability has usually been

the only statistic calculated, although decisions about the

true availability of the system should take uncertainty

into account. Uncertanities in the value of MTBF and MTTR

reflect an uncertainty in the value of the point avail-

ability

A(t)MTBF
MTBF + MTTR

Treating these uncertain parameters as random variab les,

the distribution of the point av ilabilitv can be der-ived

by comb inJ.inq the distributions of t1le failure and rer K>ir

times° Hence, cconstr cting t mates and ,onf idenc.ý,
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statements for the availability which are consistent wi,.'t

the equivalent statements or, the failure time and .epair

time parameters.

Thompson [172] derives techniques for placi.ng a

lower confidence limit on system availability and for

deciding if the true system availability differs signifi-

cantly from a specified value when MTBF and MTTR are esti-

mated from test data. Assuming times to failure and times

to repair are stc~chastically independent random variables

that follow exponential distributions with MTBF = 6 and

MTTR = ¢ respectively, (I - a) lower confidence limit

(LCL) for A is obtained by:

LC L = (3.19)
(3 + tF (2n, 2n)

where:

0 and • are sample estimates of 0 and • respec-
tively, and

n is the number of failure or repai.r actions.

In a similar manner, a two-sided confidence interval is

derived znd given by:

LCL L (3. 20)
0+pF 1  2 (2n,2n)

OF . (2n, 2n):J C T . ....... ..... .. ...... .( 3 . 2 1! )

£ 1 ( 2n, 2n ) +i
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Butterworth and NiKolaisen [29] are also concerned with

the bounds on the availarjility function for the exponen.-

tial failure discribution and foor the general repair time

distributions. They employ the gamma, lcg-normal, and

Weib•1l distributions as repair time distributions. A

bound on the error is also given. Some numerical examples

are given to illustrate the practicality of the bounds

presented.

i ~Ba'yes an Approach

The Bayesian approach in the formulation of avail-

ability models has been employed in several references

(See Table 3.1). Brender [25] carries out the statis-

tical assessment of system availability within a Bayesian

frau.ework. He consider,3 an availability model Consists

of an alternating sequence of independent exponentially

distributed operational and repair intervals, with the

failure time and repair time paramete2rs described by dis-

tinct gamma disti. butions. This model is further extended

in Reference 24, in which a more general prior distribution

is considered for the parameters consisting of a linear

combination of gamma distributions. Furthermore, a non-

exponential distribution with uncertain scale and shape

parameters is introduced. Gaver and Mazumdar !73] provide

an analysis for a particular class of sampling planc;,s

with the uLtimate goal of' estiimating the lcng-run system
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availability. They combine mixed data using snap-shot

data along with subsystem life and repair data for a

simple subsystem.

Thompson and Sprincer [174] extend this result for

a snap-shot data to systems of several subsystems. Here,

snap-shot data merely reveals whether the system is up or

down at the instant when the observation is made and

applies only where the state of each subsystem is recorded

on successive observations. A generalization of Reference

73 to systems of N subsystems can be seen in Reference 173,

where data consists of samples of subsystem life and repair

times.

Brender [251 develops a Bayes transformation which

utilizes the failure and repair data to readily convert

prior estimates and confidence statements on the avail-

ability into posterior distributions. Thompson and

Springer [174] also carry out a Bayes analysis of system

availability for an N component series system. They deter-

mine the posterior pdf of the availability through the

derivation of the pdf of the product of N independent random

variables using the Mellin integral transform. Confidence

limits on the system availability are then obtained from

the knowledge of the posterior pdf of the availability.

A numerical procedure for computing Bayes confi-

dence intervwIl s for the availability can be seen in
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Reference 173. Here, both the series and parallel systems

are considered.

A list of references on this topic is in Table

3.1.
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CHAPTER IV

SOME AVAILABILITY MODELS USING THE
MARKOVIAN APPROACH

Single-Equipment Systems

In this case we have only one unit which can have

one of two states: (1) State 0--the system is operating,

and (2) State 1--the system has failed and is under repair.

Assuming that the failure rate is constant X; i.e., the

failure distribution is exponential and also the repair

distribution is exponential with mean p. Now since the

conditional probability of failure in t, t+dt is Xdt and

the conditional probability of completing a repair in

t, t+dt is pdt, we have the following transition matrix:

0 1
0 II-X X

p= (4.1)

The system is depicted in Figure 4.1.

The differential equations describing the stochas-

tic behavior of this system can be formed by considering

the following:

The probability that the system is in State 0 at

time t+dt is derived from the probability that it was in

State 0 at time t and did not fail in t,t+dt, or that it

39
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was in State 1 at time t and returned to State 0 in t,t+dt,

thus we have:

P 0(t+dt) = P0 (t)(i-?\dt) + PI(t)pdt+G(dt) (4.2)

Similarly, the probability of being in State 1 at time

t+dt is derived from the probability that the system was

in State 0 at time t and f-iled in t,t+dt; or it was in

State 1 at time t, and the repaiL was not completed in

t,t+dt. Therefore,

P (t+dt) = P 0 (t)Xdt + P1 (t)(l-IiCt) + 0(dt) (4.3)

The term O(dt) in both equations represents the

probability of two events taking place in t,t+dt, which

is negligible so we can write the differential equations

in the form:

P0  (t) = -XP 0 (t) + WPl(t)

P1 1(t) = XP0 (t) - Pl(t)

where:

P. (t) ib the probability of being in State i at
1 time t, and

Pi '(t) is the first-order derivative with respectto t.

Shooman [165] has described a simple algorithm for writing

the above equations and it is to equate the derivative of

the probability at any node to the sum of the transitions
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coming into the node. Any unity gain factor of the self

loops must first be set to zero and the dt factors are

dropped from the branch gains.

Let the system be in State 0 (in operation) at

time t, then the initial conditions are: P 0(0) = 1,

P1 (0) = 0. Transforming Equations (4.4) into Laplace

transforms under the initial conditions we have,

sP 0 (s) - 1 + XP 0 (s) - liP1 (S) = 0

(4.5)
ssP 1 (s) - XP0 (s) + jPl(S) = 0

and simplifying

(s+X)P 0 (S) - PP 1 (S) 1

(4.5)
-XP 0(s) + (s+ 1 )P (S)= 0

Using Cramer's rule,

S+P

s+o s+i

/-x s+Vkl

and s+P (4.7)
P0 (s) =( s+X+P+)

Now the availability function A(t) will be the inverse

transform of P (5):
0

A(t) P0(t) W e (4.8)
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In many cases we are interested in the average

uptime for some dce-finite period of time. This can be

found simply by summing A(t) over the time interval of

interest and dividing by the total time.

T

A(T) = A(tkdt

S0

In this instance, we have:

A(T) + -e + X \ -(X+p)T (4.9)X+11 2T (X+P) 2

If we are interested in the long-term availability of the

system we can let T÷- and find

A (-) = ---L- (4.1.0)
X+P

Systems Subje-t to Two Types of Repair

Consider the problem where an equipment is sub-

ject to two types of repair. When the equipment fails for

the first time a partial repair is performed which restores

the system to operation; however, it increases the proba-

bility of failure. After it fails the second time, a

complete repair is performed which restores the equipment

to a "good-as-new" condition. Let A be the failure rate

when the equipment has been through a complete repair,

and when it has been through a partial. repair (' A A 1 )

43
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Similarly, let pl be the repair rate for a partial repair,

"and P2 be the repair rate for a complete repair (p2 < YI)"
To formulate the problem we establish four states in which

the system can be at any time: (1) State 0-- the system is

operating after a complete repair has been performed;

(2) State 1--the system is failed and partial repair is

being performed, (3) State 2--the system is operating after

the completion of a partial repair, and (4) State 3--the

system is failed and a complete repair is being performed.

Figure 4.2 depicts the system states. It has to be noticed

that State 0 and State 2 constitute acceptable system states.

The transition matrix is:

0 i. 2 3

0X 1

1 0 1-i P, 0
.1=1. (4.11)

2 0 0 1-), 2 X24

3 12 0 0 1 -P2

The resulting system of differential equations is

P0 t (t) = -\iP0 (t) + 2 2 P3 (t)

P (t) = - 1 1 Pl(t)

" ~~P 1It) =.iPlt M M•F2t

P ' (t) = P2(t)- 2 P (t)
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For steady state behavior it can easily be shown

that the limit of P. (t) always exists; i.e., P. = lim P. (t).1 1 1
t÷C(

This means that the steady state solutions can be found by

setting the derivatives P. '(t) equal to zero. Then the1~

system of differential equations reduces to a system of

algebraic equations. So Equations (4.12) can be reduced

to the foll.owing system of algebraic equations:

0 = P 0 + ý12 P3

1 0  11 (4.13)

0 =' lP1 - 2 P2

0 =2 P2 - 0 2 P 3

To solve these equations we must also make use of the fact

that the P.'s are a probability distribution; i.e.,1

n
SP. = 1. So adding this equation to the above system

j'=0

of algebraic equations and solving, we can find the steady-

state availability

A() P 0 + PP0 2

A(•) 2 Ai+ 2 i 2  (4 .14)
1 2" 2 2' l-211 1A 2' 2 2 12

It car be seen that if A1 = and i f Equation

(4.14) reduces to •/A+•j, which is the same value in the

previous model.
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System withSeries Conl fiqurations

Consider the simple system where two equipments.3

are connected in series such that if either fails the Eys-

tern fails. For simplicity, we shall assume that each

equipment fails at the same rate, X, and can be repaired

at the same rate, p. Now the system can be thought of as

being in any one of three possible states at some time, t:

(I) 4r-ate 0--when both equipments are operating; (2) State I--

whesiý, orne equipment is opercting and the second is undcr

xepair; and (3) State 2--when Doth equipments are under

repa ir.

Since both equipments are required, th2 system is

defined as down when it reaches State 1. Thus, A(t) = P0(t),

the probability that the system is in State 0 at ti.re, t.

The availability function is directly influenced

by the number of repairmen available to service the failed

equipments. So we will consider first th2 case when there

is a single rep&irman, and then when there are two repair-

men working i3:dependently or working together.

One Fepairma. Case

Whe.•n d single repairman is available to service the

two equipments, the system transition matrix P is:

0 1 2

0 /1--2X 2X 0

P 1 - (X4+j) (4.15)

2 \ 0 1-
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The system can be depict~ed as in F igure 4.3.. The res.iltirig

system of differential eqjuations is:

PO I (t) =- 2 x P (t)M + .P I (t)

Pig M() 2XP 0 (t) -. (\+4jP)PI(tj + -pP,(t) (4.16)

As mentioned before, this system of differential

equations can be Lolved using Laplace tran,ýic rms.. In order

to obtain the steady-state a: zLithe steady.--state

solutions can be fouiid. by letLiiicu th-, derivctives erqual

zero and using the fiact that the syst>,ým must. be in one of

the mutually exclusive states P0 + P3 + P_ 1. Th (.r efnor e

the system will, be reduced to the following system of

algebraic equations:

0 = - 2XP + pP
U

o0 = 2XP - +IAiP 1 + P

(4.17)
o XP 1 -P

1P 0 + P1. 4 P2

Solving for 110 P 1 and P 2 we ha,.e,

2
P = -

2 20J + 2Xtp + 2X
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P 2x 2 (4.18)
2 2 ý_p + 2½ + 2%

The steady-state availability, A(-), will be:

2
A(-) = P0 = ------------- 19)

2p, -• 2X

Next we will consider the case of two equijpments in :;eries

with two repairmen.

Two Euquipments in Series

With Two Repairmen

First, we will consider the case where each repair-

man can only work on one particular equipment. The Markov

graph of this system is depicted in Figure 4.4. The

transition matrix P of this system is:

0 1 2

0 /1-2X 2A' 0

P = 1 (1 l-( 1+p) A (4.20)

2 \0 2p 1-2

* The di-fference between Equations (4.15) and (4.20) is in the

last row. This occur:" because if we are in State 2 at

[ time, t, we can return to State I it either of the

1' equipmnnts is repaired.

The steady-state equations, of this syrLem are:

1..
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0 - 2XP 0 + pPI

0 = 2AP 0 - (X+j)P 1 + 2 1P 2  (4.21)

0 = XP1 - 2•P 2

1= P + PL + P

0 -- 2

Solving, we find that:

2
A(c) = P = --n-__-2 (4.22)

Joint Servicing of Failed Equipments

In the previous case if the two repairmen do not

work independently of each other, i.e., if there are two

equipment series systems with two repairmen, we might expect

that both of them would attempt to service the equipment

that failed. The only time they would work independently

is when both equipments have failed. Sandler [157]

assumed that if two repairmen. are servicing a single equip-

ment, the repair rate :Ls l.5u. Under the assumption that

if both repairmen are servicing a single equipment and a

second one fails, the second repairman immediately returns

to service his own equipment. In this case, the transition

matrix will be:

0 1 2

o0 (12X 2X 0

P = 1 5l.50 I-(1.5p+X) X (4.23)

2 0 2p 1- 2p
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The steady state equations of this system are:

0 = - 2XP0 + lo5sP 1

2AP - (1.5,p-+-X)P1 + 2ijP 2  (4ý24)
0 = XP. - 2pP2

1p 0 + Pl1+ P 2

Solving, we find that:

A(-) = + 43• + 272 (4.25)

Availability Models of Parallel

Redundant Configurations

Consider a two-equipment redundant system operating

in parallel which can be in the following states:

(1) State 0--both equipments operating, (2) State 1--one

equipment operating and one equipment under repair, and

(3) State 2--both equipments under repair.

When the system is in State 2 it is defined as

failed. The transition diagram is depicted in Figure 4.5.

The transition matrix is developed in the same manner

as before. The transition natrix P is:

0 1 2
•0 • 0/i2ý 2X 0

P -l (4.26)

2 0 211 1-21j)
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T T

The transition matrix leads directly to the system of

linear homogenous differential equations which describe

the stochastic behavior of this7 system and are as follows:

P0 '(t) = - 2P 0(t) + Pl?(t)
0

Pl '(t) 2?P 0 (t) - (0+ )Pl(t) + 2pP 2 (t) (•927)

P2 (-) = 1~ Wt) - 2iP 2 I t)

Considering the initial. condition. let the systein be in

State 0 at time 0, then

P 0 (0) = , P 1 (0) = 01 P210) --- 0

Taking Laplice transforms cf Equations (4.27),

sP 0 ls) - P0( 0 ) . 2X'P 0 (s) A PP (S)

SP, (S) - Pl(0) 2XP0 ls) - (0+0)P4, ) 2pP-(s)

sP 2 (s) - P 2 (0) X P1 (s) 2 2(s)

(4.28)

Using the initial conditions, we obtain:

(s + 2X)P 0 (s) - 1APl(S) = 1

-2XP (S) + (s+X+p)P (s) - 21jP (S) = 0
02

X- AP(s) + (s+2p)P 2 (s) = 0

(4 .29)

Solving, using Cramer's rule, we obtain:
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s+2X --2X 0

P0 -X 0

s+2X -I 0

1-21 s-• I+• -2 j

o~ I~0 A> s+21j

Thu s,

P s(s+2j + 20)(s+k-+P)

Breaking this expression into partial fractions we obtain:

S- A + + C(4.32)
s(*-+2X+2p) (s+X+lj) s s+2dX+2 s++X+P

(let a =X+1)

As_2 + 3asA + 2a 2A + Bs2 + Bsa + Cs2 + 2asC
s(s+2a) (s+al

Equating constant terms we have

A X 2 (4.33)

2

Equating coefficient:. of s and s we obtain

2
B = 2 (4.34)

2
C =(4.35)
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Hence,

2 A2  1 2X___
P (s) = 1+ X -2,N

2(+0 2 s ((+)) 2 (s+2+2X ) (++1)2 (s+X+ýI)

(4.36)

Taking inverse Laplace transforms,

2 2  A2  -2(X+i) 22
( + ( + ) ( X+ P)

(4.37)

Since P 2 (t) is thie probability of being in the failed

state at time t, the availability at time, t, is given by:

A(t) = 1 - P,)(t) = P (t) + P (t) (4.38)

2t2 2-2 e +2)t 2 2e-(X+p)t
A -t =- *j_ _+2_A _ __ -e_ + e4 39

2 2 2 2X(4)29)

From Equation (4.39) wce obtain the steady-state expres-

sion:

T 2

A(-) = lim A(t)dt - (4.40)ST÷ (X4+P)2
0

In the two-equipment parallel system with two

repairmen, we might expect both of them to work together

if one unit failed. However, they would work independently

if both units are failed. Thus, we may have the case that

if a single repairman services a failed unit, the repair

rate is p, but if two repairmen service the same failed

equipment the repair rate is 1 .511 [Sandler ]57) If we
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1 -further assume that when both repairmen are servicing a

single unit and the second one fails, the second repairman

irnediately returns to service his own unit, then the

transition matrix is as follows:

0 1 2

¢ 0 1-2X 2X

P 1 1.5p i-(1.5p+X) (4.41)

2 02 0• 1-2 ,p)

In this case it is assumed that failure of any unit was

detected the instant it occurred. Very often this is not

the case and the repair operation starts only when the

entire system has failed.

(• Let us consider the model in which only one unit

is repaired if the system of two units is parallel fails

due to failure of both -ni ;s. It is only when preventive

maintenance is underta)%en that the system is restored to

the state where both units are operating. There i3 only

one repairman. The Markov graph is shown in Figure 4.6 and

the transition matrix is

0 1 2

0 >2X 2 X 0

P= 1 0 l-X A (4.42)

2 0
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The diff,_Žrential cquations are.

P0 (t) = -2ý ) () (t)

Pl (t) = (t(t) -i t) (4.43)
1 0

P' (lt) P -( lPWt)

Taking Laplace transforms and using the inxitial con-li-

tions P0(0) = 1, P1 (0) = 0, and P 2 (G) = 1, then:

(s+2X) P0 (s) ]

-2XPo0(s) + (s+),l- 1 (S) -P vP 2 (s) 0 (4.44)

* - •Pl(S) + (s0)P 2 (s)= 0

and
Ss+2ý 0]

1-2) S+ý 0
0 -0

Ss+2 0 0 (4.45)

-2X• s4 X -11

0 - s+ij

or

P (S) 2A 2

2 sis+20) (s++I+)

S- 1 _ A 1 -+2) ____

i i i s !•-I) (s+2X) 22
+ ý2 X2 ) (s+x~p)

(4.46)

Takiinq inverse Laplace transforms, we obtain:
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2

k t A e-2X t + 2X 2 -(X +11)t (4.47)

and I

2adA(t) =1 -P 2 (t) = _i _ + -2At 2X 2 -l•
A+ M-_ e- (_1 e

-A(4.48)

rNow if in the system with two units in parallel and two

repairmen, the status of the individual units is not

monitored, repair will not begin until the system is in

State 2 where both units have failed. We can define the

four states with reference to the Markov graph shown in

Figure 4,7 as follows: (1) State 0--both units are opera-

ting; (2) State 1--one unit is operating, one failed and

has not been detected; (3) State 2--both units faile(' ad

are under repair; and (4) State 3--one unit is operating,

one has failed and is under repair.

The transition matrix is:

0 1 2 3

0 4-2x 2 0 0

1 / 0 i-X , 0
P (5 (4.49)

0 0 1-2i 2p

3 0 i-( p+XI)

Tho system of tl'e differential equations is:
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P (t) =2,P (t) + pP 3 (ti

S' t) 2,P 0 (t) - XP 1 t)

p2, (t) = XP 1 (t) - 2aP 2 ,t) 2 + t P3 (t)

P3 (t) 2ýiP2(t) - (P+X)P 3t3 3

(4.50)

Taking the inverse Laplace transforms with the ini.iai

condition Po(O) = 1, P, (0) = 0, P 10) = 0, and P (0) 0,0 2 3

we have

(s+2X)Po0 (S) -pP 3 •s) = I

-2A Po0 s) + (s+4Pl(s) -(s)

- 1Pl(s) - (9+20)P2 (s) - Np3 (s) =

- 2pP-(s) + (s- +-)P 3 (s) = 0

14.51)

and

s+2X 0 1 -p

-2X s+X 0 0

0 -X 0 -X

P2 (s) = 0 0 0 +- {452)

s+ 2X 0 0 -p

-2X s+X 0 0

0 -A s+2p -x

0 0 -? "i s+j-+X

where the nunec-ator = 2 (s+p+A) and
S~2

the denominator s(s+3A) { .C-s(3p+.)+2o 2
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2
The sclu:.i.on for the roots of s + s(i+,p) + 2 L0 yields

3" 2_ ý 2
'1 - 3• ;'• ± 134+X - •J(4. 53)

, 2 2

H cn
( S) 2 2X•'sl+ (4.54)

2  s (S+3A) (s.-r,) (s-r 2)

Breaking thin, exprsE.ion into partial fract'i.ons,

p ) + + (4.55)
.i °+2A •-r s-r2

i'Lhe valaes of A, 13 C, Ln2 L ucaýn b,: fo~ia Lv sia-ressaon

Taki~g the inverse Laplace transforms, we obtain,

P~ t . -3Xt. rl er 2 tP,.,(t) = A + I? e,-3x + C e 1 . De 2 4 56)

and the eva> ,ability is give.;n b>d

SAft) = 1 - m it) .(457)

Inszectio] of the qcuadratic equation for A:,• shows that

.r, and r 2 are ý.ways negative real numbers s,.nce ), and v

are aiwayis positive; therefore, all. the -time hori.?c.Cns

art.! decaying exponentiai ly and the instan ov. availabil-

ity, A(t), rapidly convýrqes to the steady-statoe value.

Equation (4.56) is complcx in n:ature re a' r• and

r2) no". having9 simple forms and, cunsequently, Lt .;F iot
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easy to obtain the steady-statc.. availability from Equation

(4. 57) But the steady--:tate availability may be obtained

by studying the steady-state behavior. This steady-state

solution car be found by setting the derivatives P. ' (t)1

equal to ?ero. T2hen the system of differential equations

U redu•ces to a system of algebraic equations, The additional

i.act that P's are a probability and hence

F P. = 1 needs to Le used where n is the number ofS.1. =0 .-

possible states, So to obtain the steady-state availabil-

i ty the ,et of equations is:

0 = -2A'P + 10 -3

2 0= 2XP0 - API

0 X A 1 -2pP2 + AP3  (4.58)

0 = 2 pP 2  - (X+•)P3

J = •0 + p + p2 + P3

Solving' for P2 using the last four equations,
t2

2A - x 0 0

0 x 0 x

0 0 0 (X+p)

_ _ _ _ _ 2 +P
3.1 1 1 1 -- 2 (A 2+Aj•/._

p 2 2 3 2
P 2A -A 0 0 6ýiX +2X +6Aii

10 -21 A

0 0 2 p -(X+ i)
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P= 2 + 2  (4.59)X2+3 Ij 43t2

The steady-state availability is:

2 pX +3ýý(4 60
A(o) = 1 - P= 2.2

X2 +3 *iX +3(.

Many complex problems can similarly be solved for the

steady-state availability without too much difficulty.

Availability of Standby

Redundant Configurations

Standby redundancy assumes that the off-line

equipment(s) either cannot fail or have a failure rate

less than on-line equipments. When this is true, we would

expect a system's availability to be greater with standby

redundancy than with parallel redundancy. Consider a two-

equipment standby system where the on-line equipment fails

at the rate, X, and the off-line equipment cannot fail

until it is switched to an on-line position. Assuming

perfect switch reliability, the transition diagram for

this system is depicted in Figure 4.8.

The transition matrix for this system is-

0 1 2

P 1-A A \ (4.61)

2 0 vi ]-vi /
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INV
The steady-state equation of this system is:

0 = -XP 0 + P

0 XP + 1 - (X+u)PI + (.p0 1 2(4.62)

0= + XP1 + PP2

.= P0 + p1 + p 201 2

The steady-state availability can be found as:

A(P) = P 0 + P 2 1 - 2

2
A(oo) LL .2 (4.63)

P + XP +
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CHAPTER V

CORRECTIVE AND PREVENTIVE MAINTENANCE
AND OPTIMIZATION TECHNIQUES

Effect of Corrective and

Preventive Maintenance

At one time or another all reccverable systems

are subject to some form of maintenance. in general,

there are two categories of maintenance actions. The

first is off-shedule or corrective maintenance and is per-

formed whenever there is an inservice failure or mal-

function. The system operation is restored by replacing,

repairing or adjusting the component or components which

caused the interruption of service. The second category

is the scheduled or preventive maintenance and is performed

at regular intervals to keep the system in a condition

consistent with its built-in levels of performance reli-

ability and safety. According to Bazovsky [14], during

preventive maintenance, servicing, and inspection, minor

and major overhauls are done such that

1. regular care is provided to normally operating
subsystems and components which require such
attention (lubrication, refueling, cleaning,
adjustment, alignment, etc.)

2. failed redundant components are checked, replaced,
or repaired if the system contains redundancy; and

•. cortponents which are nearing a wearout condition
are replaced or overhauled.

69



Preventive maintenance is usually associated with

wearout failures. Preventive maintenance policies consist

of scme action depending upon eitrher the operating age

of certain components in the system, the state of the

system degradation, or the system configuration. In the

first case, a preventive maintenance policy is usually

some program for the planned replacement or repair of cer-

tain critical components after they have accumulated a

given number of operating hours. in the second case, the

[ preventive maintenance policies are designed to minimize

the time the system will spend in the degraded state.

In the third case, the preventive maintenance policies

consist of periodic inspection and repair to increase the

mean life of the system.

Planned replacements or maintenance actions are

advantageous for systems and parts whose failure rate

increase with time, or are less costly to replace or

repair when operating than after failure. Under preven-

tive mdintenalice policies it may be possible either to

:nciease a piece of equipment's availability or relia-

bility oi to minimize the to)tal cost of replacement and

repairs. Ti is, -ie of :he mo:3t important maintenance

problems is that of sP cifying a maintenan.ce policy which

balances the cost oi failures against the cost of preven-

tive maintenance acAions in order to minimize total

maintenance cost. For preventive mjJntenance to be

70
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worthwhile, the failure rate of the systemi oust increase

over time or the preventive maintenance of the system must

cost less than the corrective maintenance. Normally, pre-

ventive maintenance for a component is assumed to have the

same effect as the replacement of the component. in

general, four different types of preventive maintenance

are possible (see Table 5.1).

TABLE 5.1

TYPE OF PREVENTIVE MAINTENANCE

Type of Preventive Maintenance References

Block replacement type 10, 17, 39, 175, 185, 195

Age replacement type 8, 11, 1 38, 41, 52,
112, 125, 133, 155, 181-
184, 195

Random periodic r-place- 10; 26, 64, 78, 182, 183
ment type 195

Gequentially determined
replacement type 8, 10-12, 98, 195

In block replacement, all components of a given

type are replaced (or repaired) simultaneously at times

independent, of the failure history of the system. This

policy is perhaps more realistic than others since it does

not require the keeping of records on component use, but

it has the undesirable characteristic that relatively new

components are replaced. This method is sornetinres called

minimal ie.air-replacement type because for failure only a
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r minimal repair is done, then the system is always replaced

at age T. By definition, a minimal repair does not

affect the hazard rate of the system but it enables the

system to continue its work. It is often called "bad as

old."

In age replacement, we replace a component exactly

at the time of failure or at T hours after its installa-

tion (previous replacement or previous preventive main-

tenance), whichever occurs first (T is constant). The

random periodi, po*!icy differs only in that T is a random

"variable. Gopalan and D'Souza [78] have found the avail-

ability and reliability of a 1-server 2-unit system sub-

ject to preventive maintenance and repair unde• -the

assumption that the pdf's of the times to failure and to

preventive maintenance of a unit are arbitrary, while the

repair and preventive maintenance rates are constant but

different. Gopalan and Venkatachalam 1811 extended this

work to a n-unit system and also they analyzed a n-unit

system in which each unit consis-t-.. of two components con-

nected in series. The sequentially determined replacement

policy is one in which the replacement interval is deter-

mined at each removal (or preventive maintenance) in accord

with the time remaining to the time span.

The earliest approach to the planned replacement

problem was done by Campbell 136! an3 Welker [183] it

,is concerned with mass repilacement, and develops a method

V 2



for determining optimum replacement intervals for certain

vacuum tubes. Optimum block replacement policies for an

infinite time span is also studied by Savage [161]. A

theory of optimum sequential replacement policies for the

case of a finite time horizon has been developed by Barlow

and Proschan [12]•, They show that for a finite time

horizon there exists policies which require that after

each removal the next planned replacement interval is

selected to minimize the expected expenditure during the

remaining time, znd that these policies will be more effec-

tive than a fixed replacement policy. Hcwever, periodic

or preventive maintenance policies assuming an infinite

usage horizon seem to have received the most attention in

the literature.

E,-flier work on restricted forms of preventive

maintenance problems is found in Reference 181. In a

series of reports, Weiss [18.1-183] considers the effect

on system reliability and on the maintenance costs of both

strictly periodic an( random periodic maintenance or

replacement policies for an essentially infinite usagje

period. The operating characteristic of random periodic

pel icies is determined by Flehinger 164]. Derman and

Sacks [52] obtain the optimal replacement policy for a

piece of equipment in which the decis-ion to replace

depends upon thie observed stat. ()f the e(ouipment deter iora-

tion at specifiecd pojint s in tilme . The d:riiVatio01 of Ll
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optimum periodic maintenance, interval ccrresporiding to a

given firite E"pan is basically a much more difficult

pr-oblem. Dat low and Prostohan [111 prove the existence

of such an optima] poli..y. Furt.zer, they carefully expose

the ctcictly periodic and random periodic raaintenance

problems, and have shown that for an infinite time hori-

zon T-here always exists a str.i.ctly periodic maintenance

policy which is superior to a random policy [12].

Meyers and Dick 4120) have studied the effects of

prevertive maintenance on a',ailability for a system com-

posed of similar components where at least n out of m

components must operate for t"e system to function.

Nakacyawa and Osaki [132] h:ive dealt with optimal preven-

tive maintenance policies to maximize the availability for

:2-unit redundant syscem.

Q•tnsmL AAlocation of Availability Parameters

As the high &tegree of complexity is involved in

many of the modern-day systems, much interest has been

shown in allocating the availabilicy parameters at com-

ponent levels in the early stages of system design. The

or, ýical problem is to determine those parameters from a

design, redesign or operating point of view so that some

measure such as cost or weight of the system is minimized

while a system availability requirement is met. Various

combinations of availability parameters are used as deci-

sion variables in the allocation problem (see Table 5.2).
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TABLE 5. 2

AVAILABILITY PARAMFTF-J7 ';

(decision variables in Vh: mode1)

Availability Parameter, References

MTBF and MTTR 96, 119, 145, 164. 190, 193

Numbers of redundant
components 94, 138, 157

MTBF, MTTR, and number of
redundant components 75, 110

Failure rate, repair rate,
and preventive mainte-
nance period 39, 175, 176

Failure rate, mean correc-
tive maintenance time,
mean preventive mainte-
nance time, and age for
preventive maintenance 112

The optimization techniques employed for the

availability allocation problem are summarized in Table 5.3.

TABLE 5.3

OPTIMIZATION TECHNIQUE EMPLOYED FOR
AVAILABILITY ALLOCATION

Optimization Technique References

Dynamic Programminq 94. 110, 157, 164, 190

Integer programming 160

Geometric programming 96

Lagrange multipliers 75, 119, 164, 176

SUMT 38, 39, 112, 15
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The tradeoff technique between reliability and

maa.;ltainability i: discussed by Gol.dman and Whitin [75].

They employed Laqrangt; multipliers and show how the

avai.lability parameters consistent wiLh the minimum cost

operation and the specif.ed system availability can be

calculated. Kabak [L6] has used geometric programming

to determine the opt-imal design parameters that mrnimize

total systenm cost.

Johnson [941 presents a methodology for optimizinc)

the cost function under the predetermined aailability

level. McNichols and Messer, Jr. [1.191 have employed a

cost-based procedure for allocating the availability

parameters at coraponents leve~i. The allocation problem

Js expressed as the ntiniiiizatior of the total improvement

cost, subject to the constraint of meeting the system

availability goal, and is solved using the Lagrange multi-

pliers method. This allocation technique is applicable to

systems which can be described as a series mcdel; that is,

all ccnponents are necessary for proper system function-

ing. Extension to other models has not been considered

although it appears feasible and would greatly expand the

useftlness and application areas of the allocation prob-

lem.

it it also assuined that the individual components

exhibit constant failure rates anid that failures occur

independently. The removal of these assumptions would
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generalize the allocation procedure and ceytain]y make it

more realistic. However, without the coi'rtant failure

rate assumption, analytic solutions are usually not

feasible and often impossible. The ef.'ects of variouo

modes c Llure could be investigated by careful analysis

and pre.;.. ion of possible failure patterns, and subse-

quent cd--ermination of the effect of these on the system

availability.

The cost equations used in this development

describe the costs associated with the improvement of

component failure rates and repair times from achieved

levels. Thus, the availability requirement is attained in

the manner that requires the least cost in improvement of

design and equipment. Although this problem is important

to design and development groups, the allocations should

be made on the basis of minimizing the cost of the systemn

throughout its life. In this respect, the cost equations

could be expanded to include the effects of component

allocations on such costs of system ownershLp as sparing

and downtinme. The ultimate goal would be to allocate to

the system components the levels of reliability and main-

tainability that would minimize the overall tutal system

lifetime costs.

Shershin [1641 has dealt with mathematical means

for optimizing the simultaneous apporti-onents -t
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reliability and maintainability by mean?-s of. both Lagrange

multipliers technique and dynamicr :rogramming,

Wilkinson and Palvekar [1901 have also used

dynamic progr-amming for optimally allocating availaLility

to a multicomponent system. They determine the MTBF and

PITTR that mirnimize the system cost under the minimum

aveilaoility requircment. As an extensicn of this study,

LantLrt et al. [110] present a method for determining the

optiirum MTBF, MTTR, and the number of redundant comnon-

enrts for a multistage system to achieve a given availabil-

ity at minimum cost by dynamic programming.

Tillman and Chatterjee [175] have studied the

problem of allocating the failure rate, repair rate, and

preventive maintenance period to each component of the

system consisting of n subsystems in series where each

subsystem has two identical components in parallel. An

extension of this study can be seen in Reference 112, in

which availability parameters consist of failure rate,

mean corrective maintenance time, mean preventive main-

tenance time, and age for preventive maintenance of each

component. Furthermore, a general series-parallel system

configurati .mn is considered. in both studies, the sequen-

tial unconstrained minimization technique (SUMT), which

incorporates the Hooke and Jeeves pattern search and

heuristic programming, employeO

J
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In Reference 38 not only the availability is con-

sidered, but both the availability and mean cycle-time

are considered as constraints of the system. The objec-

tive is to maximize the system cost includir:g the recur-

ring and nonrecurring cost. In this study only the age

replacement is considered, but the approach can be readily

applied to other replacement policies. The problem is

formulated and solved as a nonlinear programming problem.

Lie '1121 studied the optimal availability alloca-

* tion problem for a series--parallel system consisting of

subsystems in series, where each subsystem has identical

units in parallel having various probability density

functions for failure and repair times of each unit. In

developing the availhbility models, two types of main--

tenance policies for each subsystem are considered. The

corrective maintenance is performed when the subsystem

fails due to the failure of all redundant units and the

preventive maintenance is scheduled at a fixed age of the

subsystem and is actually performed only if the subsystem

has not failed before this fixed age.

Preventive maintenance action consists of replac-

ing or repairing only the failed units if each unit has a

constant failure rate and replacing both failed and

unfailed units if each unit has an increasing failure rate

with time. Thus, each subsystem is assumed to be fully

restored after the completion of eJ ther ccrrect ive or
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preventive maintenance. The cost of the system consists

of three components--the cost for designing the mean time

between maintenance and mean corrective and preventive

maintenance time, the cost for corrective maintenance, and

the cost for preventive maintenance. The optimal avail-

ability allocation problem, is then to determine individual

units availability specifications which will minimize the

total cost of the system under the constraint of meeting

the system availability requirement. Both the cost func-

tion and the availability equation of the system are non-

linear; the optimization methods employed to solve this

problem are both generalized reduced gradient (GRG)

method and sequential unconstrained minimization technique

(SUMT).

Summary and Recommendations

Summary

This thesis presents the results of an extensive

literature review an availability of maintained systems.

In Chapter II the different concepts and definition of

availability is discussed; then a survey of the basic ele-

ments of availability is made to include the failure

process, repair process and system configuration. The

references are classified according to the last three

elements. In Chapter III the different approaches used in

obtaining availabil.it methods are discussed. In
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Chapter IV many availability models using the Markovian

approach are presented. In Chapter V the effect of preven-

tive maintenance policies on availability is explained and

classification of the availability parameters used in the

model and system optimization is presented.

Recommendations

While this survey covers a wide variety of topics

on availability, there are some interesting areas for

future research. One of the major areas is the situation

when the Markovian conditions are not met or not approxi-

mately met and non-Markovian models must be used. Devel-

opment in this area would permit the use of distributions

other than the exponential. The whole area of non-perfect

sw~itching needs to be studied. The perfect switching

models are the easiest to develop bhL, in practice, non-

perfect switching cas(-•s are encounte.red.

8.1.
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